If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+18m+15=0
a = 3; b = 18; c = +15;
Δ = b2-4ac
Δ = 182-4·3·15
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-12}{2*3}=\frac{-30}{6} =-5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+12}{2*3}=\frac{-6}{6} =-1 $
| 10+7f=6f | | 4+12x=4x+10 | | 9-5s=-3-3s-4 | | 8x+14=-3x-74 | | -4-3f=10f-4 | | 6a−5=5+a | | 9−5s=-3−3s−4 | | -7v-10=10-9v | | -6(2y-4)=60 | | 9/15=2t/5 | | 155656216516516515132132132m12321321313213123132132132132132132=2516516516516516516516151651651651561+416513513435130316162 | | 8f-7=9f | | 5(y+7)(y-9)=0 | | -154=7(3p-1) | | -7v−10=10−9v | | -3x-2-4x+8=48 | | 2+8b=7b | | -232=-1-7(5b+3) | | 5h=-3+8h | | x^2+11=9x-3 | | 9+9j=5j+1 | | 126=6v+6(-4+4v0 | | 2(5x+4)+5=93 | | 4h=9+5h | | 7/1v=11 | | -5(5+5x)=-175 | | 8+2k=-6(-6-7) | | -3+7=-7x+5 | | -4z=-9-3z | | -k+10=4k | | -3(n-5)=15-3n | | -4v=9-v |